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Reminders

Corrections due next Tuesday (or you can give them to
me today)

You don't need to do 5e or 6 (but hey, why not?)
PA2 grades are out

PA3 grades out next week | hope
Quiz 9 out
PA4 due next Tuesday
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Plan

Review Quiz 8
Return to end of PCA
Foundations of Bayesian modeling (IMO)

Note: The above will likely take 2 lectures
Probably, mostly math today, more code on Tuesday
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Quiz 8 + PCA ending example
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Details for today... a story to keep in mind

Bayes theorem is a simple probability rule (originally for point
prgbobili’ries) that is Thepfofndo’rion f%r... lorig YIorp

Bayesian statistics where the goal is to estimate the posterior
distribution of a parameter. One way to do so is through...

MAP Estimation, although there are others. Manr of these
alternative approaches can be implemented effectively using...

Probabilistic Programming

Finally, Bayesian statistical models are often complex, but can be
easily represented with

Directed (Probabilistic) Graphical Models, AKA "Bayesian
Networks”. However, if is critical to note that even though these
are called “Bayesian networks”, they don’t have to represent a
Bayesian model. So I'll mostly stick with D-PGM
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Bayes Rule / Bayes Theorem

P(A| B) =

A B = events

P(A|B) = probability of A given B is true
P(B|A) = probability of B given A'is true

P(A) ( ) the mdependent probabilities of A
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Bayes Rule / Bayes Theorem

Q derived |

*B . A = does not love candy
B = loves soda
1 P g . P(A) 2gebra, ;-

P(A |@ — ( @ ( ) )iig deal?

- P(B) (A&E | A) x p(A)

pA&B|B)= P =—_2F
A, B = events p(B)
P(A|B) = probability of A given B is true
P(BJ|A) = probability of B given A is true (A&B | B)xp(B)
: v i P D|D)Xp\b
the ind dent probabilit fA -

P(A), P(B) _ aned"|13 ependent probabilities o p(A & B | A) = p(A)
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More From Statquest

p(no love ¢ & love s | love s) x p(love s)
p(no love c)

p(no love ¢ & love s | no love ¢) =

Soda!!!

N

/
no love c| love s Q
p(love s|| no love c) =E | )
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Bayes Theorem Example 1: Allergies
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Bayes Theorem Example 2: Spell Check

Q
Example from: hitp://www.stat.columbia.edu/~gelman/book/BDA3.pdf, Section 1.4
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http://www.stat.columbia.edu/~gelman/book/BDA3.pdf

Moving on

[Bayes Theorem is a way to take two things:

What we think we already know about
C something (our prior)

What we have learned from data about that
thing (our likelihood)

And to use them to update our knowledge of
the thing
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Bayesian Stats, Definition 1

The goal of Bayesian statistics is to represent prior
uncertainty about model parameters with @

orobability distribufionandto updafe this prior

uncertainty with current data to produce a
posterior probability distrioution for the parameter
that contains less uncertainty

Scott M. Lynch: Intfroduction to Applied Bayesian
Statistics and Estimation for Social Scientists (2007)
Springer. "

Chapter 3
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Bayesian Stats, Definition 1

The goal of Bayesian statistics is to represent prior uncertainty about model
parameters with a probability distribution and to update this prior uncertainty
with current data to produce a posterior probability distribution for the
parameter that contains less uncertainty

a distribution, so the posterior is t00, now.

(In our examples thus far, we just have been using
point probabilities)

(Key distinction from above examples: The prior is
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Bayesian Stats, Definition &

O

r\The practice of updating the probability of
the value of some parameter 6 of

model M being the correct value, based on
K‘observo’rions (D for data)

https://www.cs.rice.edu/~oqilvie/comp571/2018/09/13/bayesian-
inference.ntml

| like it b/c it emphasizes the model
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https://www.cs.rice.edu/~ogilvie/comp571/2018/09/13/bayesian-inference.html

Bayesian Statistics

04 oS atNe
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BB = p(A|B)p(B) f(6]data) = (data|9)f(9),
p(4) L Lf(da,ta)
™= ?QS\-N\“O( )

P (ab)

' (data) = ff%data'l 0YF(6)do

E?osterior o Likelihood x Pri(_)B,
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Bayesian Statistics

f\v@ﬁt

Posterior < Likelihood x Prior,

\ — )
\,ﬁ\@\r VS "‘7 V\G%\ ?

O

@e’r up the full probability model (the joint)
@ Condition on observed data (estimate the posterior)
3. Evaluate model fit a,
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Probabilistic Programming + An Example

= hitps://nbviewer.org/aithub/CamDavidsonPilon/Probabilis
tic-Programming-and-Bayesian-Methods-for-
Hackers/blob/master/Chapterl Infroduction/Chl Infrodu
ction PYMC3.ipynb#
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https://nbviewer.org/github/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/blob/master/Chapter1_Introduction/Ch1_Introduction_PyMC3.ipynb

Bayesian Statistics

Posterior o< Likelihood X Prior,

Set up the full probability model (the joint)
Condifion on observed data (estimate the posterior)
Evaluate model fit a,
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